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Inductive instability in heterogeneous nonstationary systems

Yu. Dolinsky* and T. Elperin†

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
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In this study we analyze a new type of electric dynamo caused by the rapid change of the distribution of the
electric conductivity in heterogeneous conducting systems. It is demonstrated that there exist two types of
electric dynamos, namely, the regular magnetic dynamo and the electric current dynamo. The magnetic dy-
namo is associated with the growth of the total energy of the magnetic field. The electric current dynamo is
defined as the growth of the total electric current through some cross section of a conductor, whereby the
choice of the cross section is determined by the symmetry of the excited electromagnetic field. We show that
the condition for the excitation of the electric current dynamo is less restrictive than the condition for the
excitation of the magnetic dynamo, and it can be satisfied even without a hydrodynamic flow. The existence of
the hydrodynamic flow is cardinal for the excitation of the magnetic dynamo. In contrast to the turbulent
magnetic dynamo which is associated with the fact that magnetic-field lines are ‘‘frozen in’’ to the fluid and
thus can be excited at high magnetic Reynolds numbers, the laminar magnetic dynamo which is considered in
the present study can be excited at the relatively low magnetic Reynolds numbers Rem>1 depending upon the
symmetry of the electromagnetic field. In this study we determined the dependence of the magnetic Reynolds
number providing the excitation of the instability upon the symmetry of the electromagnetic field.
@S1063-651X~97!03209-1#

PACS number~s!: 41.20.Bt, 41.20.Gz
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I. INTRODUCTION

In our previous study@1# we showed that the motion of
jump of an electric conductivity with a sufficiently high ve
locity of the front causes a transition of the system into
unstable with respect to the spontaneous excitation of
electromagnetic field state. The mechanism of the instab
is associated with the work performed by the source of m
tion, which depends upon the direction of the interface
locity and the direction of the ponderomotive forces. In
case when the ponderomotive forces impede the motio
the interface the energy from the source of motion is tra
formed into the energy of the electromagnetic field. Wh
such a process occurs sufficiently fast, the rate of ene
dissipation is not enough to compensate for the growth of
electromagnetic field caused by the work of the ponderom
tive forces.

In our previous study@1# we investigated the instability o
the infinitely long cylindrical conductor with a movin
boundary with respect to the spontaneous excitation of
electric current. This model of an infinitely long conduct
restricts the range of application of the obtained results
their theoretical foundation. Indeed, in an infinitely long co
ductor the effect may be overestimated since the electrom
netic field ~vector potential! is logarithmically divergent far
from the conductor’s surface. Therefore, from the point
view of various applications and for the theoretical valid
tion of the instability, it is desirable to analyze this proble
for a finite system. Such a problem is considered in
present study for a system with a spherical symmetry.

*Electronic address: yuli@menix.bgu.ac.il
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The investigated instability is accompanied by a redis
bution of the magnetic field, from regions far away from t
conductor to regions where the electric current density
essentially nonzero. The situation is similar to the se
focusing in the nonlinear optical wave@2#, although this
similarity is only of a formal character since the involve
physical mechanisms are completely different.

Apart from the inductive instability occurring in a movin
medium, we consider the feasibility of the occurrence of
electric current dynamo in a medium without hydrodynam
flow. It is shown that such instability can be caused by
rapid decrease of the inductance. Such a rapid decreas
inductance in the heterogeneous conductors can occur
necessarily due to a hydrodynamic flow, but can be cau
by a variation of the electric resistance of some regions in
conductor or by variation of its geometry.

The possibility for a transition of the system into a sta
with a negative damping resistance, i.e., an electric cur
dynamo, was discussed first in Ref.@3#. In Ref. @4# we de-
termined the magnitude of the threshold electric currentI * ,
whereby the velocity of motion of the electric conductivi
jump becomes sufficient for the transition of the system i
a state with a negative damping resistance caused by
rapid decrease of the inductance. In Ref.@5# we analyzed the
electric current instability in layered conductors caused
rapid variation of the resistance of the layers, and conside
electric current instability in an electric circuit with condu
tors connected in parallel.

The main goal of this study is to investigate electric cu
rent and magnetic instabilities in systems with a spher
symmetry. The analysis of this problem is rather simple, a
can be of interest in astrophysics and geophysics.

The paper is organized as follows. In Sec. II we presen
general analysis of the magnetic and electric current in
3633 © 1997 The American Physical Society
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3634 56YU. DOLINSKY AND T. ELPERIN
bilities using Maxwell equations. In Sec. III we study ma
netic and electric current dynamos in a conducting implod
sphere, and determine the structure of the excited fields
pending upon their symmetry. In Sec. IV we discuss a p
sibility for the excitation of the electric current dynamo d
to rapid variation of the spatial distribution of electric co
ductivity in a medium without hydrodynamic flow.

II. GENERAL CONDITIONS FOR EXCITATION
OF ELECTRIC AND MAGNETIC DYNAMOS

IN A CONDUCTING MEDIUM

A general condition for excitation of the electromagne
field in a conducting medium can be determined from
energy balance equation, which can be derived directly fr
Maxwell equation@6,7#

¹W 3EW 52
1

c

]HW

]t
, ¹W 3HW 5

4p

c
jW,

jW

s
5EW 1

1

c
~vW 3HW !,

~1!

where EW (rW,t) and HW (rW,t) are electric and magnetic fields
respectively, jW(rW,t) is a density of an electric curren
s(rW,t) is an electric conductivity, andvW (rW,t) is the velocity
of the medium. Equations~1! yield the following equation
for the energy balance@5#:

1

8p E ]

]t
HW 2dV52E jW2

s
dV2

1

c E vW •~ jW3HW !dV.

~2!

According to Eq.~2! the total rate of change of the energ
of electromagnetic field is equal to the sum of Joule ene
dissipation and the work performed to sustain fluid flow
the field of the ponderomotive forces@the last term in Eq.
~2!#. If this work is performed against the ponderomoti
forces and it is greater that the dissipation rate, then

]

]t E HW 2dV.0, ~3!

i.e., there occurs a magnetic dynamo.
Equation~2! shows that, in a medium without hydrody

namic flow @vW (rW,t)50#, the magnetic dynamo defined b
Eq. ~3! does not occur. However, as it was demonstrated
Ref. @5#, these conditions do not prevent from the occurren
of the electric current dynamo whereby

]

]t
~ I 2!>0, ~4!

whereI (t) is the total electric current through the cross s
tion of a conductor. The choice of the cross section depe
upon a symmetry of the problem and the distribution of
electric currentjW(rW,t). Thus, e.g., in the case of a conductin
sphere with a radiusr̄ (t) with excited azimuthal electric cur
rent jW5(0,0,j w),

I ~ t !5E
0

pE
0

r̄ ~ t !
j wdu r dr ~5!
g
e-
-
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-
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e

Inequality ~4! is valid when the following condition is
satisfied:

R1L̇,0, ~6!

where an Ohmic resistanceR(t) and inductanceL(t) are
defined as follows:

I 2R~ t !5E j 2

s
dV,

LI 2

2
5E HW 2

8p
dV. ~7!

Indeed, direct substitution of Eqs.~7! into Eq. ~2! shows
that inequality~6! is a necessary and sufficient condition f
the occurrence of the electric current dynamo~4!. In hetero-
geneous conductors the inductance may vary even witho
flow of a conducting fluid due to a rapid change of the loc
conductivity @5#.

In Sec. III we consider a magnetic dynamo in an implo
ing sphere which is similar to the dynamo analyzed in R
@3#. This dynamo is different from the turbulent magne
dynamo @6#, and is caused by the motion of the extern
surface of the conducting fluid. Thus the fluid velocity
directed along the gradient of the electric conductivity. T
latter renders the Cowling theorem~see, e.g., Ref.@6#! in-
valid, and this is the reason that such a dynamo does
require a complex geometry of a magnetic field and can
cur at relatively low values of magnetic Reynolds numb
Rem>1.

III. MAGNETIC DYNAMO IN A PROBLEM
WITH A SPHERICAL GEOMETRY

Consider a case with a spherical symmetry with a toroi
vector potential~see, e.g., Refs.@6# and @7#! AW 5(0,0,Aw),
which determines electric and magnetic fields:

EW 52
1

c

]AW

]t
, HW 5¹W 3AW . ~8!

Then using Eq.~1!, we arrive at the equation for the vecto
potential:

¹W 2AW 5
4ps

c2 S ]AW

]t
2vW 3¹W 3AW D . ~9!

We seek a solution for the asimutal component of a vec
potentialAw(r ,t) in the following self-similar form:

Aw~r ,t !5a~ t !b~u!F~x!, 0,u,p, ~10!

where x5r / r̄ (t) and r̄ (t) is a characteristic dimensiona
time-dependent parameter of the problem; the phys
meaning ofr̄ (t) will be elucidated below.

In order to provide the toroidal and self-similar fie
Aw(r ,t) we will assume thatnW (r ,t) can be presented as

vW ~r ,t !5nW u~x!rG , a~ t !5S r̄ ~ t !

r 0
D l

, ~11!

wherenW is a unit vector normal to the surface,r 05 r̄ (0), and
u(x) is a dimensionless function. Then, using Eqs.~9!–~11!,
we obtain the following equations forb(u) andF~x!:
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1

sinu

]

]u S sinu
]b

]u D2
b~u!

sin2~u!
52l ~ l 11!b~u!, ~12!

]2F

]x2 1
2

x

]F

]x
2

l ~ l 11!

x2 F5n~x!S~x!, ~13!

where

S~x!5F~x!S l1
u~x!

x D1
]F

]x
„u~x!2x…,

~14!

n~x!5
4p

c2 s~x!rG~ t ! r̄ ~ t ! .

In order to provide the self-similarity of the problem, th
electric conductivitys~x! must satisfy the conditions(x)
5s0(t)s̄(x), wheres̄(x) is a dimensionless function, an

4p

c2 s0~ t !rG~ t ! r̄ ~ t !5n0 , n05const . ~15!

Solutions of Eq.~12! without singularity in the whole range
0,u,p are associated Legendre polynomials~see, e.g.,
Ref. @8#!, b(u)5Pl

1 (cosu), l 51,2, . . . .
Before turning to the analysis of some specific models

s̄(x) andu(x), let us derive first some relations which a
required for the analysis of the instabilities. Using the last
Eqs. ~1! for the electric current density, and Eqs.~8! and
~10!, we arrive at the formulas for the asimutal component
an electric current densityj w , normal component of mag
netic fieldHn and componentHu :

j 52
ca~ t !

4p r̄ 2~ t !
n0s̄~x!Pl

1 ~m!S~x!,

Hu5
a~ t !

r̄ ~ t !
Pl

1 ~m!S ]F

]x
1

F

x D , ~16!

Hn5
a~ t !

r̄ ~ t !
Pl ~m!l ~ l 11!

F~x!

x
,

wherem5cosu and Pl (m)[Pl
0 (m).

Then the energy of a magnetic fieldWm5*(HW 2/8p)dV is
determined by the following expression:

Wm5
1

2

a2~ t ! r̄ ~ t !l ~ l 11!

2l 11
@ I 11l ~ l 11!I 2#, ~17!

where

I 15E
0

`S ]F

]x
1

F

x D 2

x2dx, I 25E
0

`

F2~x!dx, ~18!

Then using the known formulas for the associated Legen
polynomials~see, e.g., Ref.@8#!:
r

f

f

re

E
21

1

@Pl ~m!#2dm5
2

2l 11
,

E
21

1

Pl
1 ~m!

dm

A12m2
512~21! l ,

E
21

1

@Pl
1 ~m!#2dm5

2l ~ l 11!

2l 11
,

we determine the total currentI (t) for odd values ofl from
Eqs.~5! and ~16!:

I ~ t !52
n0ca~ t !

2p
B1 , B15E

0

`

xS~x!s̄dx. ~19!

According to the last equation and Eqs.~7!, the formula for
inductanceL reads

L5
r̄ ~ t !

c2

4p2l ~ l 11!

2l 11

1

n0
2

1

B1
2 @ I 11l ~ l 11!I 2#, ~20!

Using the first of Eqs.~7! and the derived above expressio
for j (rW,t) and I (t), we arrive at the formula for Ohmic re
sistanceR(t):

R~ t !5
p

2

B0

B1
2

1

s0r̄ ~ t !
, ~21!

whereB05*0
`s̄x2S2(x)dx.

Then condition~6! can be written as

n0,2
l ~ l 11!

2l 11

I 11l ~ l 11!I 2

B0
. ~22!

Inequality~22! determines the threshold value of the para
etern0 and the minimum absolute value of the spatial sc
variation rG (t) which ensure the validity of condition~6!.
Note that the time variation of a spatial scale does not n
essarily require a hydrodynamic flow and can occur due
propagation of a front-separating regions with different el
tric conductivities, e.g., during melting.

It is worthwhile noting that, according to Eq.~20!, an
inductance decreases whenrG (t),0. Here lies the principal
difference of the case with a spherical symmetry from
case with a cylindrical symmetry which we analyzed in R
@1#, and where inductance decreases if the character
length scaler̄ (t) growth.

Now we turn to the analysis of the situation with som
particular functionss̄(x) and u(x). Consider a homoge
neous sphere with a radiusr̄ (t) with uniform densityg(t)
and conductivitys(t) embedded in a dielectric, i.e., forr
, r̄ (t), and s50 and g(t)50 for r . r̄ (t). In this case a

continuity equationġ1¹W •(gnW )50 yieldsu(x)5x and

S~x!5~l11!F~x!, n~x!5n0 . ~23!

Nonsingular solutions of Eq.~13! with functions~23! in the
domain 0,x,1 with a nonzero electric current read
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3636 56YU. DOLINSKY AND T. ELPERIN
F~x!5
Jl 11/2~kx!

Ax
, ~24!

where Jl 11/2(z) is the Bessel function andk252n0(l
11).

In the domainx.1, electric current vanishes, and a co
dition of the continuity of a vector potential yields

F~x!5
F~1!

x l 11 , F~1!5Jl 11/2~k!. ~25!

Using the conditions of continuity of magnetic field and Eq
~24! and ~25!, we find that

]

]x S Jl 11/2~kx!

Ax
D U

x51

52~ l 11!Jl 11/2~k!. ~26!

Using the identity for functionsJl(z),

]Jl~z!

]z
5

l

z
Jl~z!2Jl11~z!,

Eq. ~26! can be written as

~2l 11!Jl 11/2~k!5kJl 13/2~k!. ~27!

In the regionn0(l11).0, k5 ia and a.0, and Eq.~27!
can be rewritten as follows:

~2l 11!I l 11/2~a!52aI l 13/2~a!, ~28!

where I l(a) are modified Bessel functions of a real arg
ment. In the rangea.0, I l(a).0, Eq. ~28! does not have
roots.

Thus Eq.~27! has roots in the regionn0(l11),0. Let
k(l ).0 be the roots of Eq.~27!. Then n0(l11)5
2k2(l ) or

l52
k2~ l !

n0
21. ~29!

Using Eqs. ~11! and ~17! we find that Ẇm5(2l
11)Wm(t)rG (t)/ r̄ (t), i.e.,

Wm~ t !5W0S r̄ ~ t !

r̄ 0
D 2l11

. ~30!

In the regionn0.0 @rG (t).0#, according to Eq.~29! l
,21, and Eq.~30! yields Ẇm(t),0. Thus, in a case of the
expanding sphere a magnetic dynamo does not occur. S
in this case an inductance increases, the electric curren
namo is not excited either.

In the rangen0,0 conditionẆm(t).0 implies thatl,
21/2. Then, according to Eq.~29!,

TABLE I. Roots of Eq.~27!.

l 1 2 3 4 5

k 3.14 4.49 5.96 6.98 8.18
.

ce
y-

n0,22k2~ l !. ~31!

Using Eq.~19! for the total electric current we find that

]I 2

]t
52lI 2

rG~ t !

r̄ ~ t !
, I 2~ t !5I 2~0!S r̄ ~ t !

r̄ 0
D 2l

.

A condition for excitation of an electric current dynam
yieldsn0,0, andl,0, which, according to Eq.~29!, can be
satisfied in the range

n0,2k2~ l !. ~32!

In the range of velocities22k2(l ),n0,2k2(l ) the elec-
tric current dynamo is excited but a magnetic dynamo d
not occur.

In Table I we show valuesk(l ) which are the solutions
of Eq. ~27!. As can be seen from this table the thresho
velocity which is required for the transition of the syste
into a regime of generation increases with the increase of
angular momentuml . In Figs. 1 and 2 we show the varia
tion of magnetic fieldshu(x)5@]F(x)/]x#1@F(x)/x# and
hn(x)5@F(x)/x# vs x for different l . As can be seen from
these figures, the maximum of the magnetic field occurs
x,1, and forr̄ (t)→0 the domain with a maximum of mag
netic field implodes into a region with smallr .

FIG. 1. Tangential component of magnetic fieldhu vs x for
different angular momental ~1, l 51; 2, l 53; 3, l 55!.

FIG. 2. Normal component of magnetic fieldhn vs x for differ-
ent angular momental ~1, l 51; 2, l 53; 3, l 55!.
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56 3637INDUCTIVE INSTABILITY IN HETEROGENEOUS . . .
Note that in the basis of functionsF(x)[F(kx) it is
possible to construct the general solution for the wide cl
of initial conditions. In this study we analyzed only the spe
tra in the system, and have not addressed this problem.

IV. ABOUT THE FEASIBILITY OF AN ELECTRIC
CURRENT DYNAMO IN A MEDIUM
WITHOUT HYDRODYNAMIC FLOW

It was shown above that when condition~6! is satisfied
the electric current dynamo can occur in the system e
without hydrodynamic flow, i.e., withu(x)50. However
there arises a question whether it is possible to satisf
conditionR1L̇,0 in real systems at least ‘‘kinematically.
This question can be formulated differently, namely, whet
an equation of magnetic diffusion, boundary conditions
continuity of electric and magnetic fields yield such a restr
tion that R1L̇ is always positive. In order to answer th
question, we studied Eq.~13! with u(x)50:

S~x!5lF~x!2x
]F

]x
~33!

for various valuesn~x!. We analyzed propagation of a con
ductivity wave in a system whereby

s~x!5s1u~12x!1s2@u~x21!2u~x2p!#, ~34!

wheres1 ands2 are electric conductivities in regions wit
r , r̄ 1(t) andr̄ 1(t),r , r̄ 2(t), respectively,u~x! is Heaviside
function, and in order to provide the existence of the se
similar solution it was assumed thatr̄ 2(t)/ r̄ 1(t)5p5const,
i.e., the velocity ratio of the trailing edge and front of th
conductivity jump remains constant. Without presenting
details of the analysis, just note that for finitep, Eq. ~13!
with function ~34!, does not have solutionsl,0 and n0
,0 at least in the region with Iml50.

Nevertheless, in spite of this negative result we can
claim that electric current instability cannot occur in a m
dium without a hydrodynamic flow because the self-simi
form of the solution is quite a strong restriction. Moreov
using the magnetostatic and lumped parameter approx
-

s
-

n

a

r
f
-

-

e

t
-
r
,
a-

tions, we showed the feasibility of an electric current d
namo in Ref.@5#. Without going into details, note only tha
the criterion for excitation of the instability corresponds
the range of parameters where effects of magnetic diffus
cannot be neglected. Thus, currently we cannot answer q
tions about the feasibility of an electric current dynamo in
medium without a hydrodynamic flow either positively o
negatively.

V. CONCLUSIONS

The main goal of this study was to analyze the feasibi
of the magnetic dynamo and the electric current dynamo
finite volume systems with a moving front of electric co
ductivity. Since such a magnetic dynamo requires relativ
low values of magnetic Reynolds numbers Rm
5(4ps/c2)r̄(t)rG(t)>1, it is conceivable to suggest that it ca
occur in various systems. Some of these systems were
cussed in our previous studies. Thus in Ref.@1# we analyzed
the excitation of the electric current in rapidly expandi
cylindrical conductor. In Ref.@5# we investigated an excita
tion of the electric current in electric circuits with conducto
connected in parallel when the electric conductivity of one
the conductors varies rapidly. Here we estimate a poss
contribution of the averaged radial motion of the ionosph
to the variation of the magnetic field of the Earth. Althoug
the geometry of this problem~a multilayered sphere! is dif-
ferent from that analyzed in this study, the physics of t
phenomenon is essentially the same. Consider the radia
pansion of a sphere with a radiusR;109 cm and an electric
conductivitys;109 s21. Then, the radial velocity which is
required for increasing the magnetic field inside this sph
is relatively low,v>c2/4psR'1 m/s. Certainly, the excita
tion of the magnetic dynamo by the ionosphere motions
their effect on the magnetic field of the Earth is a subject
a separate investigation. However, based on the obtaine
sults, it is conceivable to suggest the feasibility of such
fects. It is worthwhile noting that the magnetic dynamo co
sidered in this study may also be of relevance in astrophy
in investigations of the role of magnetic fields in stellar ev
lution and pulsating stars.
e,
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