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Inductive instability in heterogeneous nonstationary systems
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In this study we analyze a new type of electric dynamo caused by the rapid change of the distribution of the
electric conductivity in heterogeneous conducting systems. It is demonstrated that there exist two types of
electric dynamos, namely, the regular magnetic dynamo and the electric current dynamo. The magnetic dy-
namo is associated with the growth of the total energy of the magnetic field. The electric current dynamo is
defined as the growth of the total electric current through some cross section of a conductor, whereby the
choice of the cross section is determined by the symmetry of the excited electromagnetic field. We show that
the condition for the excitation of the electric current dynamo is less restrictive than the condition for the
excitation of the magnetic dynamo, and it can be satisfied even without a hydrodynamic flow. The existence of
the hydrodynamic flow is cardinal for the excitation of the magnetic dynamo. In contrast to the turbulent
magnetic dynamo which is associated with the fact that magnetic-field lines are “frozen in” to the fluid and
thus can be excited at high magnetic Reynolds numbers, the laminar magnetic dynamo which is considered in
the present study can be excited at the relatively low magnetic Reynolds numhigerd BRepending upon the
symmetry of the electromagnetic field. In this study we determined the dependence of the magnetic Reynolds
number providing the excitation of the instability upon the symmetry of the electromagnetic field.
[S1063-651%97)03209-1

PACS numbegps): 41.20.Bt, 41.20.Gz

I. INTRODUCTION The investigated instability is accompanied by a redistri-
bution of the magnetic field, from regions far away from the
In our previous studyl] we showed that the motion of a conductor to regions where the electric current density is
jump of an electric conductivity with a sufficiently high ve- essentially nonzero. The situation is similar to the self-
locity of the front causes a transition of the system into thefocusing in the nonlinear optical wag], although this
unstable with respect to the spontaneous excitation of theimilarity is only of a formal character since the involved
electromagnetic field state. The mechanism of the instabilityphysical mechanisms are completely different.
is associated with the work performed by the source of mo- Apart from the inductive instability occurring in a moving
tion, which depends upon the direction of the interface vemedium, we consider the feasibility of the occurrence of the
locity and the direction of the ponderomotive forces. In aelectric current dynamo in a medium without hydrodynamic
case when the ponderomotive forces impede the motion dfow. It is shown that such instability can be caused by a
the interface the energy from the source of motion is transfapid decrease of the inductance. Such a rapid decrease of
formed into the energy of the electromagnetic field. Wheninductance in the heterogeneous conductors can occur not
such a process occurs sufficiently fast, the rate of energgecessarily due to a hydrodynamic flow, but can be caused
dissipation is not enough to compensate for the growth of théy a variation of the electric resistance of some regions in the
electromagnetic field caused by the work of the ponderomoeonductor or by variation of its geometry.
tive forces. The possibility for a transition of the system into a state
In our previous studyl] we investigated the instability of with a negative damping resistance, i.e., an electric current
the infinitely long cylindrical conductor with a moving dynamo, was discussed first in Rg8]. In Ref.[4] we de-
boundary with respect to the spontaneous excitation of theermined the magnitude of the threshold electric curiént
electric current. This model of an infinitely long conductor whereby the velocity of motion of the electric conductivity
restricts the range of application of the obtained results anfump becomes sufficient for the transition of the system into
their theoretical foundation. Indeed, in an infinitely long con-a state with a negative damping resistance caused by the
ductor the effect may be overestimated since the electromagapid decrease of the inductance. In R&l.we analyzed the
netic field (vector potential is logarithmically divergent far electric current instability in layered conductors caused by
from the conductor’'s surface. Therefore, from the point ofrapid variation of the resistance of the layers, and considered
view of various applications and for the theoretical valida-electric current instability in an electric circuit with conduc-
tion of the instability, it is desirable to analyze this problemtors connected in parallel.
for a finite system. Such a problem is considered in the The main goal of this study is to investigate electric cur-
present study for a system with a spherical symmetry. rent and magnetic instabilities in systems with a spherical
symmetry. The analysis of this problem is rather simple, and
can be of interest in astrophysics and geophysics.
*Electronic address: yuli@menix.bgu.ac.il The paper is organized as follows. In Sec. Il we present a
"Electronic address: elperin@menix.bgu.ac.il general analysis of the magnetic and electric current insta-
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bilities using Maxwell equations. In Sec. lll we study mag- Inequality (4) is valid when the following condition is
netic and electric current dynamos in a conducting implodingsatisfied:

sphere, and determine the structure of the excited fields de- )

pending upon their symmetry. In Sec. IV we discuss a pos- R+L<0, (6)
sibility for the excitation of the electric current dynamo due
to rapid variation of the spatial distribution of electric con-
ductivity in a medium without hydrodynamic flow.

where an Ohmic resistandg(t) and inductance.(t) are
defined as follows:

i 2 2 32
LI A
Il. GENERAL CONDITIONS FOR EXCITATION IZR(t)zf Pav, — = Zqv. @)
OF ELECTRIC AND MAGNETIC DYNAMOS o 2 8m

IN'/A CONDUCTING MEDIUM Indeed, direct substitution of EqéZ) into Eq. (2) shows

A general condition for excitation of the electromagnetic that inequality(6) is a necessary and sufficient condition for
field in a conducting medium can be determined from thethe occurrence of the electric current dynatp In hetero-
energy balance equation, which can be derived directly frongeneous conductors the inductance may vary even without a

Maxwell equation6,7] flow of a conducting fluid due to a rapid change of the local
conductivity[5].

L 1o - . A4m. | . 1 . . In Sec. lll we consider a magnetic dynamo in an implod-

VXE=— c XH= < i = E+ < (vXH), ing sphere which is similar to the dynamo analyzed in Ref.

[3]. This dynamo is different from the turbulent magnetic
dynamo[6], and is caused by the motion of the external
surface of the conducting fluid. Thus the fluid velocity is

i N ' . . directed along the gradient of the electric conductivity. The
respectively, j(F,t) is a density of an electric current, |atter renders the Cowling theorefgee, e.g., Refl6]) in-
o(F,t) is an electric conductivity, and(r,t) is the velocity  yalid, and this is the reason that such a dynamo does not
of the medium. Equationél) yield the following equation  require a complex geometry of a magnetic field and can oc-

D

where E(F,t) and H(f,t) are electric and magnetic fields,

for the energy balancks]: cur at relatively low values of magnetic Reynolds numbers
- Re,=1.
1 J -, j2 1 (. . -
87 f o Hav= _f sV7e f o-(JxH)dV. lll. MAGNETIC DYNAMO IN A PROBLEM
(2) WITH A SPHERICAL GEOMETRY

According to Eq(2) the total rate of change of the energy ~ Consider a case with a spherical symmetry with a toroidal
of electromagnetic field is equal to the sum of Joule energyector potential(see, e.g., Refd6] and[7]) A=(0,0A,),
dissipation and the work performed to sustain fluid flow inwhich determines electric and magnetic fields:
the field of the ponderomotive forcgthe last term in Eq.

(2)]. If this work is performed against the ponderomotive - 1A - . .
forces and it is greater that the dissipation rate, then E=- c ot H=VXA. ®
J r Then using Eq(1), we arrive at the equation for the vector
— 2 ;
at J H*dV=>0, ©) potential:
i.e., there occurs a magnetic dynamo. -, A4mo oA . . .
Equation(2) shows that, in a medium without hydrody- VA=~ | Gp v XV XA] ©)

namic flow[v(F,t)=0], the magnetic dynamo defined by
Eqg. (3) does not occur. However, as it was demonstrated itWe seek a solution for the asimutal component of a vector
Ref.[5], these conditions do not prevent from the occurrencepotentialA ,(r,t) in the following self-similar form:

of the electric current dynamo whereby
A r.t)y=at)b(9)®(x), 0<o<m, (10

J _ _
p (1%)=0, (4 where y=r/r(t) andr(t) is a characteristic dimensional
time-dependent parameter of the problem; the physical

wherel (t) is the total electric current through the cross sec.meaning ofr (t) will be elucidated below. o
In order to provide the toroidal and self-similar field

tion of a conductor. The choice of the cross section depends ;
upon a symmetry of the problem and the distribution of the”¢(r:t) We will assume thai(r,t) can be presented as
electric currentj*(r*,t)_.Thus, e.g., in the case of a conducting . )\

sphere with a radius(t) with excited azimuthal electric cur- v(r,t)=nu(y)r, a(t)= -~ (11
rent f=(0,0,j o) 0

wheren is a unit vector normal to the surfaag,=r(0), and

I(t)= JWJT“)J- dor dr (5) u(x) is a dimensionless function. Then, using E@—(11),
0oJo °° we obtain the following equations fdx(#) and ®(y):
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1 0 ~db b(6) )
m% (sma ﬁ) - W:_/(/_I_ 1)b(6), (12
FO 200 /(/+1)
FX +;§—_XQ_¢_V(X)S(X)1 (13

where

u(x)

d
S(X)=<I>(x)( A+ ' + g uix)—x),

(14)

4 P
V(x)=? a()rr(t).

In order to provide the self-similarity of the problem, the

electric conductivityo(y) must satisfy the conditiorr(y)
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1 ) 2
Ll[P/(M)] du= 2771

[* P =11y
o a2 ’
o _2/(/+1)
J_l[P/(M)]ZdM—Z/—+1,

we determine the total currehtt) for odd values of” from
Egs.(5) and(16):

I(t)=— Vogi(t)

By, By= f:xsu)ﬁx. (19

According to the last equation and Eq$), the formula for

=oo(t)a(x), wherea(y) is a dimensionless function, and inductancel reads

4 L
?ao(t)r(t)r(t)=v0, vo=cConst. (15

Solutions of Eq(12) without singularity in the whole range
0< < are associated Legendre polynomidee, e.g.,

Ref. [8]), b(#)=PL(cost), /=1,2, ... .

Before turning to the analysis of some specific models for
a(x) andu(y), let us derive first some relations which are
required for the analysis of the instabilities. Using the last of
Egs. (1) for the electric current density, and Ed8) and

T(t) 4w/ (/+1) 1 1 ,
:?WV—SB—%[H-F/(/-F].NZ], (20

Using the first of Eqs(7) and the derived above expressions
for j(r,t) andI(t), we arrive at the formula for Ohmic re-
sistanceR(t):

7TBO 1

(10), we arrive at the formulas for the asimutal component ofvhereBo= 5o x*S*(x)dx.

an electric current density,, normal component of mag-

netic fieldH,, and component 4:

. cait)
j=- ypsts) voa(X)PA(w)S(x),

H _av P’ (@+?) (16)
H_Wt) /(/1/) Or)X X ’
a(t) D(x)

Ho=sg PAR/ (/1) ==,

0]
whereu=cos) and P () =P%(u).

Then the energy of a magnetic field, = [ (H2/8m)dV is
determined by the following expression:

_1aknr(t)/(/+1)
m2 2/+1

[+ (7+Dla], (A7)

where

o0
Il:f
0

b 2

®
_+_
ax X

x?dy, lszo ®3(x)dy, (18

R(t)= 28 oo (1)’ (21)
Then condition(6) can be written as
A(7+1) L+ /(7 + D)
poe LD 11t A4 D1y .

2/+1 Bo

Inequality (22) determines the threshold value of the param-
eter vy and the minimum absolute value of the spatial scale
variation f(t) which ensure the validity of conditiof).
Note that the time variation of a spatial scale does not nec-
essarily require a hydrodynamic flow and can occur due to
propagation of a front-separating regions with different elec-
tric conductivities, e.g., during melting.

It is worthwhile noting that, according to E@20), an
inductance decreases whe(t)<0. Here lies the principal
difference of the case with a spherical symmetry from the
case with a cylindrical symmetry which we analyzed in Ref.
[1], and where inductance decreases if the characteristic
length scale (t) growth.

Now we turn to the analysis of the situation with some
particular functionso(y) and u(y). Consider a homoge-
neous sphere with a radiugt) with uniform densityy(t)
and conductivityo(t) embedded in a dielectric, i.e., for
<r(t), and =0 and y(t)=0 for r>r(t). In this case a

continuity equationy+5-(yﬁ)zo yieldsu(y)=x and

SO)=(A+1)P(x), v(x)=wo. (23

Then using the known formulas for the associated Legendrdlonsingular solutions of Eq13) with functions(23) in the

polynomials(see, e.g., Ref.8]):

domain O< y<1 with a nonzero electric current read
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TABLE I. Roots of Eq.(27).

/ 1 2 3 4 5
k 3.14 4.49 5.96 6.98 8.18
J/ 4 12AKx)
O(y)=—"F, (24
Vx

where J,, 1,(2) is the Bessel function an#?= — vg(\
+1).

In the domainy>1, electric current vanishes, and a con-
dition of the continuity of a vector potential yields

(1)

q’()()=7+—1- @(1)=J,+12K). (29

Using the conditions of continuity of magnetic field and Egs.

(24) and (25), we find that

d [ I/ 1Akx) :
— | =—(/+1)J,112k). (26
ax Y% -
Using the identity for functiond,(2),
3 (z) M\
=2 WD),
Eqg. (26) can be written as
27+ 1), 112 K) =kJ/ 1 31AK). (27)

In the regionvy(A+1)>0, k=i and «>0, and Eq.(27)
can be rewritten as follows:

27+ Dl oy a)=—al sz @), (28)

wherel, («) are modified Bessel functions of a real argu-
ment. In the rangex>0, I, (a)>0, Eq.(28) does not have
roots.

Thus EQ.(27) has roots in the regiomy(A +1)<0. Let
k(7)>0 be the roots of EQ.(27). Then yy(A+1)=
—K3(/) or

KO

Vo

= ~1. (29)

Using Egs. (1) and (17) we find that Wy,=(2\
+ L)W (D)F(D)/TQR), ie.,
2 +1

T(t)

To

Wi(t) = Wo( (30

In the regionyy>0 [F(t)>0], according to Eq(29) A
<—1, and Eq.(30) yields W,(t)<0. Thus, in a case of the

expanding sphere a magnetic dynamo does not occur. Since
in this case an inductance increases, the electric current dy-

namo is not excited either.

In the rangery<0 ConditionWm(t)>O implies thatA <
—1/2. Then, according to Edq29),
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FIG. 1. Tangential component of magnetic fidig vs y for
different angular momentd (1, /=1; 2,/=3; 3,/=5).
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vo<—2K3(/). (31)

Using Eq.(19) for the total electric current we find that

O
)
A condition for excitation of an electric current dynamo

yields v¢<<0, and\ <0, which, according to Eq29), can be
satisfied in the range

J?

= |2(t):|2(0)(

vo<—k3(/). (32
In the range of velocities- 2k?(/) < vo< —k?(/) the elec-
tric current dynamo is excited but a magnetic dynamo does
not occur.

In Table | we show valuek(/) which are the solutions
of Eqg. (27). As can be seen from this table the threshold
velocity which is required for the transition of the system
into a regime of generation increases with the increase of the
angular momentuna’. In Figs. 1 and 2 we show the varia-
tion of magnetic field$1,(x) =[P (x)/Ix]+[P(x)/x] and
h,(x) =[P (x)/x] vs x for different/. As can be seen from
these figures, the maximum of the magnetic field occurs at
x<1, and forr (t)—0 the domain with a maximum of mag-
netic field implodes into a region with smaill

n T
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FIG. 2. Normal component of magnetic fidig vs y for differ-
ent angular momentd (1, /=1; 2,/=3; 3,/=5).
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Note that in the basis of function®(x)=®(ky) it is  tions, we showed the feasibility of an electric current dy-
possible to construct the general solution for the wide classamo in Ref[5]. Without going into details, note only that
of initial conditions. In this study we analyzed only the spec-the criterion for excitation of the instability corresponds to
tra in the system, and have not addressed this problem. the range of parameters where effects of magnetic diffusion
cannot be neglected. Thus, currently we cannot answer ques-

IV. ABOUT THE FEASIBILITY OF AN ELECTRIC tions about the feasibility of an electric current dynamo in a
CURRENT DYNAMO IN A MEDIUM medium without a hydrodynamic flow either positively or
WITHOUT HYDRODYNAMIC FLOW negatively.

It was shown above that when conditié®) is satisfied
the electric current dynamo can occur in the system even V. CONCLUSIONS

without hydrodynamic flow, i.e., wittu(y)=0. However . . o

there arises a question whether it is possible to satisfy a The main gpal of this study was to af‘a'yze the feaS|b|I|ty

conditionR+L <0 in real systems at least “kinematically.” of the magnetic dynamo and the electric current dynamo in
Y Y- finite volume systems with a moving front of electric con-

This question can be for_mulgted_ differently, namely'.whetherductivity. Since such a magnetic dynamo requires relatively
an equation of magnetic diffusion, boundary conditions of

continuity of electric and magnetic fields yield such a restric-IOW values - of magnetic Reynolds _numbers qRe
i o . " =(4malcA)r(t)r(t)=1, it is conceivable to suggest that it can
tion thatR+L is always positive. In order to answer this occyr in various systems. Some of these systems were dis-
question, we studied E¢13) with u(x)=0: cussed in our previous studies. Thus in R&j.we analyzed
oD the excitation of the electric current in rapidly expanding
S(X)=AP(x)—x —— (33)  cylindrical conductor. In Ref[5] we investigated an excita-
ax tion of the electric current in electric circuits with conductors
connected in parallel when the electric conductivity of one of
the conductors varies rapidly. Here we estimate a possible
contribution of the averaged radial motion of the ionosphere
o(x)=010(1—x)+os[0(x—1)—6(x—p)], (34 tothe variation of the magnetic field of the Earth. Although
the geometry of this problerta multilayered sphejas dif-
whereg; and o, are electric conductivities in regions with ferent from that analyzed in this study, the physics of the
r<r,(t) andr,(t)<r<r,(t), respectivelyf(y) is Heaviside =~ phenomenon is essentially the same. Consider the radial ex-
function, and in order to provide the existence of the self-pansion of a sphere with a radifs-10° cm and an electric
similar solution it was assumed thad(t)/r,(t)=p=const, conductivity c~10° s"1. Then, the radial velocity which is
i.e., the velocity ratio of the trailing edge and front of the required for increasing the magnetic field inside this sphere
conductivity jump remains constant. Without presenting theis relatively low,v=c?/4woR~1 m/s. Certainly, the excita-
details of the analysis, just note that for finie Eq. (13)  tion of the magnetic dynamo by the ionosphere motions and
with function (34), does not have solutions<0 and v, their effect on the magnetic field of the Earth is a subject of
<0 at least in the region with Il=0. a separate investigation. However, based on the obtained re-
Nevertheless, in spite of this negative result we cannosults, it is conceivable to suggest the feasibility of such ef-
claim that electric current instability cannot occur in a me-fects. It is worthwhile noting that the magnetic dynamo con-
dium without a hydrodynamic flow because the self-similarsidered in this study may also be of relevance in astrophysics
form of the solution is quite a strong restriction. Moreover, in investigations of the role of magnetic fields in stellar evo-
using the magnetostatic and lumped parameter approximaution and pulsating stars.

for various values/(y). We analyzed propagation of a con-
ductivity wave in a system whereby
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